王崎要跟冯落衣说的,自然就是🝕🖁内模型计划了。
内模型和可构造类👒🈒,差不多就是🝕🖁花与果的关系了。可构造类是花,内模型是果。
但是,内模型毕竟是有致命缺陷的。
首先,它是完全建立在良基集合之上的。而算学也确实是存在只🕿有非良基集合才能驾驭的部分。
而且,它也排除了循环,不包含无穷降链。
另外,它也不能👣💫容纳包括第一、第二不可达基数在内的大基数。
大基数好处有很多。之前也说过,引入大基数可🃊以直接证明任何可构造的实数集合不会引发分球悖论,并且不♱需要取🖯消选择函数;引入大基数可以证明二阶算术的完备性,等等。
而筑基学派的理论体系想要发展,也必须要有🄡⚮大基数才行🔺。
但内模型也并非一无是处。
连续统问题,其实可以算是一个三阶问题了。而大基数,恰好不🕿能解决三阶问题。
内模型发可以完美解决。
所以,🏘🚙📲为了大基数,而💳🕿🏛抛🌏弃内模型,也是捡了芝麻丢了西瓜的蠢事。
所以,王崎就提出了一个想法。
一个很自然的🍉,“合在一起做撒尿牛丸”的想法。
从内模型开始🍉,使用力迫法,不断添加元素,一步步将数学模型本身扩张,直到它能够容纳大基数为止♸🍍。
力迫法本身就是通过👡👖不断添加元素,使得两个不同🙌集合的联系暴露,最终达到一种“让理论自己证明自己”的效果的。
内模型计划,算是元算之算的最终极了。
王崎说得轻松,但是冯落衣却听得骇然。
“这……你知道自己👡👖在说什么吗?”他在房间之中来🔰回踱步。
实际上,在筑基纲领出💳🕿🏛现的🅜😞时候,他对良基集合的态度都有🇯🜂⚺些动摇了。