王崎要跟冯落衣说的,自然就是内模型计划💩🔠🁾了。
内模型和可构造类,差不多就是花🌌♖🈙与果的关💩🔠🁾系了🝎。可构造类是花,内模型是果。
但是,内模型毕竟是有致命缺陷的。
首先,它是完全建立在良基集合之上的。而算学也确实是存在只有非良基集合才能驾驭的部分。
而且,它也排除了循环,不包含无穷降链。
另外,它也不能容纳包括第一🚘📧、🏖🚉第🌌♖🈙二不可达基数在内的大基数。
大基数好处有很多。之前也说过,引入大基数🞎可以直接证🛲☮明任何可构造的实数集合不会引发分球悖论,并且不需要取消选择函数;引入大基数可🞢以证明二阶算术的完备性,等等。
而筑基学派的理论体系想☟要发展,也必须🗾♪要有大基数才行。
但内模型也并非一无是处。
连续统问🄆🞤🖄题,其实可🅘以算☟是一个三阶问题了。而大基数,恰好不能解决三阶问题。
内模型发可以完美解决。
所以,为了大基数,而抛弃内模型,也是捡了芝麻🖅🐒丢了西瓜的蠢事。
所以,王崎就提出了一个想法。
一个很自然的🈂🞮,“合在一起做撒尿🌌♖🈙牛丸”的想法🝎。
从内模型开始,使用力迫法,🚘📧不断添加元素,一步🖅🐒步将数学模型本身扩张,直到它能够容纳🚖大基数为止。
力迫法本身就是通过🅘不断添加元素,使得两个不同集合的联系暴露,最终达到一种“让理论自己证明自己”的🙴🎣效果的。
内模型计划,算是元算之算的最终极了。
王崎说得轻松,但是冯落衣却听得骇然。
“这……你知道自己在说什么吗?”他在房💩🔠🁾间之中来回踱步。
实际上,在筑基纲领出现的时🚘📧候,他对良基💩🔠🁾集合的态度都有些动摇了。